Abstract
The keto-enol equilibria of the beta-diketones acetylacetone, trifluoroacetylacetone, and hexafluoroacetylacetone were determined using Fourier transform infrared spectroscopy in a novel high-pressure capillary cell. Acetylacetone and its fluorinated analogues were studied as neat liquid and as supercritical CO2 solutions at pressures up to 3.1 kbar. The keto form was found to be favored at high pressure and low temperature. The change in partial molar volume and enthalpy between the keto and enol forms was determined for the acetylacetone and trifluoroacetylacetone. Under all conditions studied, only the enol form of hexafluoroacetylacetone was observed. Based on the thermodynamic data obtained, there appears to be no advantage gained in conducting metal extractions at high pressures and low temperatures using acetylacetone or trifluoroacetylacetone.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have