Abstract

Rapid-scan- and step-scan-based Fourier transform infrared photoacoustic depth profiling results of an extracted but intact human tooth are compared. The effects of various data processing methods are examined. Analysis of the phase dispersion of the photothermal signal along with spectral linearization is used to access the extent of photoacoustic saturation in the photoacoustic spectra. Phase-modulated/phase-resolved depth profiling methods are less prone to photoacoustic saturation and provide superior localization of the surface and subsurface absorbers distributed in the tooth enamel. Mid-infrared depth profiling studies of calcified tissues can aid in the understanding of degenerative bone diseases, bone growth, and modeling, as well as tissue mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.