Abstract
Cardiac patch strategies are developed as a promising approach to regenerate the injured heart after myocardial infarction (MI). This study integrated 3D bioprinting and cardioprotective paracrine signaling to fabricate vascular patch devices containing endothelial cells (ECs) and the regenerative follistatin-like 1 (FSTL1) peptide. Engineered patch supported the 3D culture of ECs in both static and dynamic culture, forming a uniform endothelium on the printed channels. Implantation of vascular patch onto a rat model of acute MI resulted in significant reduction of scar formation, left ventricle dilation, and wall thinning, as well as enhanced ejection fraction. Furthermore, increased vascularization and proliferation of cardiomyocytes were observed in hearts treated with patches. These findings highlight the remarkable capacity of 3D bioprinted vascular patch to augment the endogenous regenerative capacity of mammalian heart, together with the exogenous cardioprotective function, to serve as a robust therapeutic device to treat acute MI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.