Abstract

At very high frequencies, the major potential of asynchronous circuits is absence of clock skew and, through that, better exploitation of relative timing relations. This paper presents Fsimac, a gate-level fault simulator for stuck-at and gate-delay faults in asynchronous sequential circuits. Fsimac not only evaluates combinational logic and typical asynchronous gates such as Muller C-elements, but also complex domino gates, which are widely used in high-speed designs. Our algorithm for desecting feedback loops is designed so as to minimize the iterations for simulating the unfolded circuit. We use min-max timing analysis to compute the bounds on the signal delays. Stuck-at faults are detected by comparing logic values at the primary outputs against the corresponding values in the fault-free design. For delay faults, we additionally compare min-max rime stamps for primary output signals. Fault coverage reported by Fsimac for pseudo-random tests generated by Cellular Automata show some very good results, but also indicate test holes for which more specific patterns are needed. We intend to deploy Fsimac for designing more effective CA-BIST.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.