Abstract
Fruit classification is found to be one of the rising fields in computer and machine vision. Many deep learning-based procedures worked out so far to classify images may have some ill-posed issues. The performance of the classification scheme depends on the range of captured images, the volume of features, types of characters, choice of features from extracted features, and type of classifiers used. This paper aims to propose a novel deep learning approach consisting of Convolution Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) application to classify the fruit images. Classification accuracy depends on the extracted and selected optimal features. Deep learning applications CNN, RNN, and LSTM were collectively involved to classify the fruits. CNN is used to extract the image features. RNN is used to select the extracted optimal features and LSTM is used to classify the fruits based on extracted and selected images features by CNN and RNN. Empirical study shows the supremacy of proposed over existing Support Vector Machine (SVM), Feed-forward Neural Network (FFNN), and Adaptive Neuro-Fuzzy Inference System (ANFIS) competitive techniques for fruit images classification. The accuracy rate of the proposed approach is quite better than the SVM, FFNN, and ANFIS schemes. It has been concluded that the proposed technique outperforms existing schemes.
Highlights
In the area of computer science, fruit classification is getting increasingly popular
The fruit images are classified by type-II fuzzy, Convolution Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) [3]
Support Vector Machine (SVM), Feed-forward Neural Network (FFNN), and Adaptive Neuro-Fuzzy Inference System (ANFIS) classification results are compared with the proposed scheme
Summary
In the area of computer science, fruit classification is getting increasingly popular. The fruit classification system’s accuracy is determined by the quality of the collected fruit images, the number of extracted features, the kinds of features, and the selection of optimum classification features from the retrieved features, as well as the type of classifier employed. Image classification is useful for categorizing fruit images and determining what kind of fruit is included in the image. On the other hand, have poor visibility problems [1,2]. The fruit images are classified by type-II fuzzy, Convolution Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) [3]. Type-II is quite a robust approach to enhance the images. They proved the supremacy of type-II fuzzy over other schemes in terms of visible edges, average gradient, and pixel saturation
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have