Abstract
AbstractMetal–organic frameworks (MOFs) have emerged as a versatile class of porous materials with tremendous potential for various applications, including energy storage devices. This review provides a comprehensive analysis of recent advancements and applications of MOFs in the field of energy storage including a brief overview of the fundamental aspects of MOFs, including their synthesis, structural diversity, and tuneable properties. MOFs have been extensively investigated for applications in advanced energy storage systems including supercapacitors. MOFs can be employed as electrode materials, separators, and catalysts, offering enhanced electrochemical performance, improved charge/discharge rates, and prolonged cycling stability. The unique tunability of MOFs allows for the rational design of tailored materials with desired properties, such as high specific capacity, excellent conductivity, and superior cycling stability. The recent developments in MOF-based electrochemical capacitors, particularly the significant progress reported in achieving high energy and power densities, are noteworthy. The exceptional charge storage capacity of MOFs, combined with their facile synthesis and scalability, makes them promising candidates for next-generation energy storage technologies. This review sheds light on the challenges and opportunities in the practical implementation of MOFs in energy storage devices and discusses strategies for enhancing the stability of MOFs in different environments, improving their electrical conductivity, and developing scalable synthesis methods. We briefly discuss perspectives and future directions, with particular focus on their research and development in the use of MOFs for energy storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.