Abstract
Super-diffusive front dynamics have been analysed via a fractional analogue of the Allen–Cahn equation. One-dimensional kink shape and such characteristics as slope at origin and domain wall dynamics have been computed numerically and satisfactorily approximated by variational techniques for a set of anomaly exponents 1 < γ < 2 . The dynamics of a two-dimensional curved front has been considered. Also, the time dependence of coarsening rates during the various evolution stages was analysed in one and two spatial dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.