Abstract
In this article, an algorithm for the numerical approximation of two-phase flow in porous media by adaptive mesh is presented. A convergent and conservative finite volume scheme for an elliptic equation is proposed, together with the finite difference schemes, upwind and MUSCL, for a hyperbolic equation on grids with local refinement. Hence, an IMPES method is applied in an adaptive composite grid to track the front of a moving solution. An object-oriented programmation technique is used. The computational results for different examples illustrate the efficiency of the proposed algorithm. © 1997 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 13: 673–697, 1997
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have