Abstract

We present the development of a front end amplifier and discriminator circuit implemented in two successive nodes of commercial CMOS process, namely 90nm and 130 nm. The aim of this work is two-fold, firstly to examine new technology features such as increased transconductance and transit frequency f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</sub> resulting in higher speed at lower power consumption, and secondly to prototype a novel front end architecture developed to maintain high dynamic range and open loop gain in the presence of the degradation of intrinsic transistor gain and low supply voltage accompanying the scaling of CMOS processes. The circuits are intended to work with silicon strip detectors of moderate length, with the 90nm version of the design being optimized for 5 pF input capacitance, and the 130nm version, up to 10 pF. Special attention has been given to the comparison of noise performance and matching of the channel gain and discriminator offsets. Although both versions show good basic analog performance in terms of speed and gain, an appreciable difference in the channel-to-channel matching and the noise figures is measured. The ENC performance of 130nm version of the amplifier follows theoretical predictions confirming no excess noise for the devices used, whilst the noise performance of the 90nm version is noticeably worse. Looking at the difference in noise performance between the two designs, the 130nm process is better understood and is thus a more appropriate choice for the current upgrade project. As a consequence, the presented 130nm design will form the core of the ABCN chip for the ATLAS SCT upgrade.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call