Abstract

The propagation of ultra-intense circularly polarized laser pulses in a relativistically transparent plasma is investigated with the help of particle-in-cell (PIC) simulations. When the incident laser pulse is strong enough to expel almost all electrons from the focal volume, the propagation of the laser front edge is found to be dominated by the balance between the laser radiation pressure and the laser-driven electrostatic pressure. Based on a one-dimensional (1D) model, the laser front edge velocity is predicted to depend on , where n0 is the initial plasma density, nc the critical density and a0 the laser amplitude. PIC simulations show that the theoretical prediction works well for not only 1D but also 2D and 3D geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.