Abstract
Folding of axial plane cleavage can occur during progressive deformation without a change in the overall background flow. Two field examples of upright (Lachlan Fold Belt, SE Australia) and recumbent (Naukluft Nappe Complex, central Namibia) folds are presented, in which strongly refracted pressure solution cleavage in competent layers on the fold limbs is buckled as a result of ongoing fold amplification. Finite element modelling confirms that cleavage refraction on limbs can be sufficient for cleavage planes to be subsequently shortened and therefore folded. Cleavage refraction is unequally developed on opposite limbs of asymmetric folds formed by oblique shortening of a layer in coaxial flow or by folding in a more general shear environment. The differences in finite strain on opposite limbs can be quite marked even when the fold shapes themselves are not obviously asymmetric. For folding in simple shear flow, as specifically modelled here, refraction is only strong on the fold limb that rotates against the imposed sense of shear. In known shear environments, this provides a potential kinematic indicator in folded units at relatively low strain (e.g. in simple shear, γ of around one), where other higher-strain indicators, typical of mylonites, are not yet sufficiently developed or are equivocal.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have