Abstract
The torsional dynamics of the 9-(N-carbazolyl)-anthracene (C9A) molecule is investigated by means of time-independent (1) and time-dependent (2) quantum-mechanical simulations in a diabatic representation. The study includes effects of surface crossing of the brightS 1 state with a dark state. (1) The intensity pattern of theS 0 →S 1 fluorescence excitation spectrum is used to fit an effective one-dimensional Hamiltonian with a single-minimum potential for the dark state together with diabatic couplings to the double well potential of the bright state. (2) Based on this Hamiltonian, first predictions for a pump-probe scheme are made. In the pump process the molecules are excited to theS 1 state followed by competing torsions in the bright state and diabatic curve crossings to the dark state, depending on the pump frequency. Assuming the probe process to be an ionization from the bright state, the interfering effects of the dark state on the dynamics in the bright state can be monitored in a directly time-dependent way on a fs-ps time scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zeitschrift f�r Physik D Atoms, Molecules and Clusters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.