Abstract

Coffinite (USiO4), along with Th1−xUxSiO4 uranothorite solid solutions, are frequently present in reduced economically exploitable uranium ores. They could also control the concentration of uranium in the environment in the case of accidental release from underground radwaste repository. This paper reports for the first time a thorough FTIR and Raman study relative to the Th1−xUxSiO4 system, including synthetic analogues of thorite and coffinite end-members. Both sets of spectra confirmed the formulation of the samples and allowed to rule out the presence of structural water molecules and/or hydroxyl groups in the coffinite. Also, no characteristic signal of UO22+ uranyl ion was recorded, ensuring that uranium was fully incorporated under its tetravalent oxidation state. The variation of the positions corresponding to SiO4 internal vibration modes was then followed versus the chemical composition of the samples. If the FTIR spectra did not revealed any significant shift in the bands position, several Raman modes followed a linear trend as a function of the uranium incorporation rate. On this basis, Raman spectroscopy could be considered as a promising tool for the semi-quantitative determination of chemical composition of uranothorite samples, particularly for those coming from mineral ores. Finally, the data collected for the coffinite end-member, as the first to be obtained on pure synthetic samples, allowed a review of the results previously reported in the literature for this compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.