Abstract

The aim of this article is to show that the Monge–Kantorovich problem is the limit, when a fluctuation parameter tends down to zero, of a sequence of entropy minimization problems, the so-called Schrödinger problems. We prove the convergence of the entropic optimal values to the optimal transport cost as the fluctuations decrease to zero, and we also show that the cluster points of the entropic minimizers are optimal transport plans. We investigate the dynamic versions of these problems by considering random paths and describe the connections between the dynamic and static problems. The proofs are essentially based on convex and functional analysis. We also need specific properties of Γ-convergence which we didnʼt find in the literature; these Γ-convergence results which are interesting in their own right are also proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.