Abstract

Despite the brilliant bioactive performance of tantalum as an orthopedic biomaterial verified through laboratory researches and clinical practice in the past decades, scarce evidences about the essential mechanisms of how tantalum contributes to osteogenesis were systematically discussed. Up to now, a few studies have uncovered preliminarily the biological mechanism of tantalum in osteogenic differentiation and osteogenesis; it is of great necessity to map out the panorama through which tantalum contributes to new bone formation. This minireview summarized current advances to demonstrate the probable signaling pathways and underlying molecular cascades through which tantalum orchestrates osteogenesis, which mainly contain Wnt/β-catenin signaling pathway, BMP signaling pathway, TGF-β signaling pathway, and integrin signaling pathway. Limits of subsistent studies and further work are also discussed, providing a novel vision for the study and application of tantalum.

Highlights

  • Tantalum (Ta), a refractory metal, was well-known for its excellent biocompatibility, corrosion resistance, and bioactivity, making Ta a desirable biomaterial for medical applications [1,2,3,4]

  • Since the introduction of trabecular metal (TM), a novel porous Ta implant for acetabular cups, by Zimmer (Warsaw, IN, USA) in the early 21st century, porous tantalum implants have been widely applied in bone and joint reconstruction surgery, with more than 800,000 TM used as early as in 2012 [5,6,7]

  • Many in vitro, in vivo, and clinical studies were carried out to compare the biological performance of Ta and Ti, synergistically demonstrating the better osteogenic property of tantalum with higher expression of osteogenic indicators in Ta group [10,11,12]

Read more

Summary

Introduction

Tantalum (Ta), a refractory metal, was well-known for its excellent biocompatibility, corrosion resistance, and bioactivity, making Ta a desirable biomaterial for medical applications [1,2,3,4]. Since the introduction of trabecular metal (TM), a novel porous Ta implant for acetabular cups, by Zimmer (Warsaw, IN, USA) in the early 21st century, porous tantalum implants have been widely applied in bone and joint reconstruction surgery, with more than 800,000 TM used as early as in 2012 [5,6,7]. Many in vitro, in vivo, and clinical studies were carried out to compare the biological performance of Ta and Ti, synergistically demonstrating the better osteogenic property of tantalum with higher expression of osteogenic indicators in Ta group [10,11,12]. Promote proliferation pointed out the limits of existing studies and outlined the future work, providing a novel vision for the study and application of tantalum

Osteogenesis Signaling Pathways Related to Ta
Summary and Personal Perspective
Conclusion
Conflicts of Interest
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.