Abstract

TGFβ and BMP signaling pathways exhibit antagonistic activities during the development of many tissues. Although the crosstalk between BMP and TGFβ signaling pathways is well established in bone development, the relationship between these two pathways is less well defined during cartilage development and postnatal homeostasis. We generated hypomorphic mouse models of cartilage-specific loss of BMP and TGFβ signaling to assess the interaction of these pathways in postnatal growth plate homeostasis. We further used the chondrogenic ATDC5 cell line to test effects of BMP and TGFβ signaling on each other's downstream targets. We found that conditional deletion of Smad1 in chondrocytes resulted in a shortening of the growth plate. The addition of Smad5 haploinsufficiency led to a more severe phenotype with shorter prehypertrophic and hypertrophic zones and decreased chondrocyte proliferation. The opposite growth plate phenotype was observed in a transgenic mouse model of decreased chondrocytic TGFβ signaling that was generated by expressing a dominant negative form of the TGFβ receptor I (ΔTβRI) in cartilage. Histological analysis demonstrated elongated growth plates with enhanced Ihh expression, as well as an increased proliferation rate with altered production of extracellular matrix components. In contrast, in chondrogenic ATDC5 cells, TGFβ was able to enhance BMP signaling, while BMP2 significantly reduces levels of TGF signaling. In summary, our data demonstrate that during endochondral ossification, BMP and TGFβ signaling can have antagonistic effects on chondrocyte proliferation and differentiation in vivo. We also found evidence of direct interaction between the two signaling pathways in a cell model of chondrogenesis in vitro.

Highlights

  • The transforming growth factor b (TGFb) superfamily is a large group of secreted polypeptides, including TGFb1, 2, 3, activins, inhibins and nodal, bone morphogenetic proteins (BMPs) and growth differentiation factors (GDFs)

  • TGFb signaling depends on Smad2 and Smad3, while BMP signaling depends on Smad1, 5 and 8

  • Our findings showed that while reduced BMP signaling in proliferating chondrocytes leads to a shortening of the growth plate in part due to decreased cell proliferation, reduced TGFb signaling results in an increased proliferation rate and an elongated growth plate

Read more

Summary

Introduction

The transforming growth factor b (TGFb) superfamily is a large group of secreted polypeptides, including TGFb1, 2, 3, activins, inhibins and nodal, bone morphogenetic proteins (BMPs) and growth differentiation factors (GDFs). TGFb family members are vitally important during embryogenesis, as well as in the homeostasis in the adult tissues. These molecules are involved in the regulation of cellular processes such as proliferation, differentiation and apoptosis. TGFb or BMP ligands bind to specific type II receptors to recruit the corresponding type I receptor to initiate a cascade of events leading to phosphorylation of their specific receptor-Smads (R-Smads). TGFb signaling depends on Smad and Smad, while BMP signaling depends on Smad and 8. TGFb/BMP signaling can be mediated by noncanonical MAPK pathways, such as P38, JNK and Erk1/2 signaling pathways, during chondrogenesis [2]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call