Abstract
A host of compounds are retained in the body of uremic patients, as a consequence of progressive renal failure. Hundreds of compounds have been reported to be retention solutes and many have been proven to have adverse biological activity, and recognized as uremic toxins. The major mechanistic overview considered to contribute to uremic toxin overload implicates glucotoxicity, lipotoxicity, hexosamine, increased polyol pathway activity and the accumulation of advanced glycation end-products (AGEs). Until recently, the gastrointestinal tract (GIT) and its associated micro-biometabolome was a neglected factor in chronic disease development. A systematic underestimation has been to undervalue the contribution of GIT dysbiosis (a gut barrier-associated abnormality) whereby low-level pro-inflammatory processes contribute to chronic kidney disease (CKD) development. Gut dysbiosis provides a plausible clue to the origin of systemic uremic toxin loads encountered in clinical practice and may explain the increasing occurrence of CKD. In this review, we further expand a hypothesis that posits that environmentally triggered and maintained microbiome perturbations drive GIT dysbiosis with resultant uremia. These subtle adaptation responses by the GIT microbiome can be significantly influenced by probiotics with specific metabolic properties, thereby reducing uremic toxins in the gut. The benefit translates to a useful clinical treatment approach for patients diagnosed with CKD. Furthermore, the role of reactive oxygen species (ROS) in different anatomical locales is highlighted as a positive process. Production of ROS in the GIT by the epithelial lining and the commensal microbe cohort is a regulated process, leading to the formation of hydrogen peroxide which acts as an essential second messenger required for normal cellular homeostasis and physiological function. Whilst this critical review has focused on end-stage CKD (type 5), our aim was to build a plausible hypothesis for the administration of probiotics with or without prebiotics for the early treatment of kidney disease. We postulate that targeting healthy ROS production in the gut with probiotics may be more beneficial than any systemic antioxidant therapy (that is proposed to nullify ROS) for the prevention of kidney disease progression. The study and understanding of health-promoting probiotic bacteria is in its infancy; it is complex and intellectually and experimentally challenging.
Highlights
The dysfunction of the kidneys leads to disturbed renal metabolism and to impaired glomerular filtration and tubular secretion/reabsorption problems
Production of reactive oxygen species (ROS) in the gastrointestinal tract (GIT) by the epithelial lining and the commensal microbe cohort is a regulated process, leading to the formation of hydrogen peroxide which acts as an essential second messenger required for normal cellular homeostasis and physiological function. Whilst this critical review has focused on end-stage chronic kidney disease (CKD), our aim was to build a plausible hypothesis for the administration of probiotics with or without prebiotics for the early treatment of kidney disease
This results in the retention of toxic solutes, which affect all organs of the body. Chronic diseases such as cardiovascular disease and infections are key causes of morbidity and mortality among patients diagnosed with chronic kidney disease (CKD) [1]
Summary
The dysfunction of the kidneys leads to disturbed renal metabolism and to impaired glomerular filtration and tubular secretion/reabsorption problems This results in the retention of toxic solutes, which affect all organs of the body. It has been posited that toxins generated by gastrointestinal dysbiosis, and introduced into the body via the small and large bowel, may all contribute to CKD They comprise advanced glycation end products, phenols and indoles [2]. Recent reports suggest that the bacterial load and the adverse products of the intestinal microbiota might influence chronic disease pathogenesis [3,4]. This is relevant to the development of CKD, a disease of increasing prevalence in many Western societies. It has been recently reported that the pharmacobiotic potential of the GIT micro-biometabolome may provide a plausible therapeutic avenue with the administration of live multi-strain probiotic cultures [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.