Abstract
Owing to the current lack of plausible and exhaustive physical pre-eruptive models, often volcanologists rely on the observation of monitoring anomalies to track the evolution of volcanic unrest episodes. Taking advantage from the work made in the development of Bayesian Event Trees (BET), here we formalize an entropy-based model to translate the observation of anomalies into probability of a specific volcanic event of interest. The model is quite general and it could be used as a stand-alone eruption forecasting tool or to set up conditional probabilities for methodologies like the BET and of the Bayesian Belief Network (BBN). The proposed model has some important features worth noting: (i) it is rooted in a coherent logic, which gives a physical sense to the heuristic information of volcanologists in terms of entropy; (ii) it is fully transparent and can be established in advance of a crisis, making the results reproducible and revisable, providing a transparent audit trail that reduces the overall degree of subjectivity in communication with civil authorities; (iii) it can be embedded in a unified probabilistic framework, which provides an univocal taxonomy of different kinds of uncertainty affecting the forecast and handles these uncertainties in a formal way. Finally, for the sake of example, we apply the procedure to track the evolution of the 1982–1984 phase of unrest at Campi Flegrei.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.