Abstract

The combinatorial topology of crystal structures may be described by finite graphs, called symmetry-labeled quotient graphs or voltage graphs, with edges labeled by symmetry operations from their space group. These symmetry operations themselves generate a space group which is generally a non-trivial subgroup of the crystal space group. The method is an extension of the so-called vector method, where translation symmetries are used as vector labels (voltages) for the edges of the graph. Non-translational symmetry operations may be used as voltages if they act freely on the net underlying the crystal structure. This extension provides a significant reduction of the size of the quotient graph. A few uninodal and binodal nets are examined as illustrations. In particular, various uninodal nets appear to be isomorphic to Cayley color graphs of space group. As an application, the full coordination sequence of the diamond net is determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call