Abstract

A certain degree of symmetry is apparent in much of the natural world, as well as in many of our creations in art, architecture, and technology. Objects with high symmetry are generally regarded with pleasure. Symmetry is perhaps the most fundamental property of the crystalline state and is a reason that gemstones have been so appreciated throughout the ages. This chapter introduces some of the fundamental concepts of symmetry—symmetry operations, symmetry elements, and the combinations of these characteristics of finite objects (point symmetry) and infinite objects (space symmetry)—as well as the way these concepts are applied in the study of crystals. An object is said to be symmetrical if after some movement, real or imagined, it is or would be indistinguishable (in appearance and other discernible properties) from the way it was initially. The movement, which might be, for example, a rotation about some fixed axis or a mirror-like reflection through some plane or a translation of the entire object in a given direction, is called a symmetry operation. The geometrical entity with respect to which the symmetry operation is performed, an axis or a plane in the examples cited, is called a symmetry element. Symmetry operations are actions that can be carried out, while symmetry elements are descriptions of possible symmetry operations. The difference between these two symmetry terms is important. It is possible not only to determine the crystal system of a given crystalline specimen by analysis of the intensities of the Bragg reflections in the diffraction pattern of the crystal, but also to learn much more about its symmetry, including its Bravais lattice and the probable space group. As indicated in Chapter 2, the 230 space groups represent the distinct ways of arranging identical objects on one of the 14 Bravais lattices by the use of certain symmetry operations to be described below. The determination of the space group of a crystal is important because it may reveal some symmetry within the contents of the unit cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call