Abstract

Snake venom is a cocktail of multifunctional biomolecules that has evolved with the purpose of capturing prey and for defense. These biomolecules are classified into different classes based on their functions. They include three-finger toxins, natriuretic peptides, phospholipases and metalloproteinases. The focus for this review is on the natriuretic peptide (NP), which is an active component that can be isolated from the venoms of vipers and mambas. In these venoms, NPs contribute to the lowering of blood pressure, causing a rapid loss of consciousness in the prey such that its mobility is reduced, paralyzing the prey, and often death follows. Over the past 30 years since the discovery of the first NP in the venom of the green mamba, venom NPs have shown potential in the development of drug therapy for heart failure. Venom NPs have long half-lives, different pharmacological profiles, and may also possess different functions in comparison to the mammalian NPs. Understanding their mechanisms of action provides the strategies needed to develop new NPs for treatment of heart failure. This review summarizes the venom NPs that have been identified over the years and how they can be useful in drug development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call