Abstract

A highly multiplexed liquid chromatography mass spectrometry-multiple reaction monitoring (MRM)-based assay has been developed for evaluating 107 candidate immune biomarkers in both hemocytes and plasma of the zebra mussel Dreissena polymorpha. The Scout-MRM strategy was employed for the first time, shortening the implementation of a targeted MRM bottom-up proteomics assay using selected immune protein-related peptides identified by shotgun discovery proteogenomics. This strategy relies on spiking scout peptides during the discovery phase and using them to build and deploy the MRM targeted proteomics method. It proved to be highly relevant, since about 90% of the targeted peptides and proteins were monitored and rapidly measured in both hemocyte and plasma samples. The sample preparation protocol was optimized by evaluating the digestion efficiency of tryptic peptides over time. The accuracy and precision of 50 stable isotope-labeled peptides were evaluated for use as internal standards. Finally, the specificity of the transitions was thoroughly assessed to ensure the reliable measurement of protein biomarkers. Several analytical and biological validation criteria were evaluated across hemocytes and plasma samples exposed ex vivo to biological contaminants, resulting in the validation of two Scout-MRM assays for the relative quantitation of 85 and 89 proteins in hemocytes and plasma, respectively. Graphical abstract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call