Abstract

A high content of yeast extract in complex media can cause auto-induction of phage T7 RNA polymerase and the consequent expression of recombinant protein in Escherichia coli BL21(DE3) during long-term cultivation. Our study demonstrated that the auto-induction of recombinant protein varied in different vectors harboring heterologous genes. Trx, GST, and their fusion proteins such as GST-human parathyroid hormone (hPTH), expressed by pET32a (+), were easily auto-induced by media containing a high content of yeast extract; however, rtPA was not easily auto-induced when using pET22b (+), although both pET systems were under the control of T7lac promoter. Furthermore, the auto-induction of GST-hPTH may start within 1-2 h after inoculation in bioreactors, which is a deficiency in the scale-up from shake flasks to bioreactors. Our results indicated that too much yeast extract in bioreactor cultivations may be responsible for the early auto-induction of target proteins and consequent loss of cell viability and plasmid instability. To achieve a satisfactory yield, host cells with both high cell viability and plasmid stability were necessary for the starter cultures in shake flasks and pre-induction cultures in bioreactors. This could be achieved simply by controlling the initial content of yeast extract and its subsequent supplementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call