Abstract

With the rapid growing availability of metagenome assembled genomes (MAGs) and associated metabolic models, the identification of metabolic potential in individual community members has become possible. However, the field still lacks an unbiassed systematic evaluation of the generated metagenomic information to uncover not only metabolic potential, but also feasibilities of these models under specific environmental conditions. In this study, we present a systematic analysis of the metabolic potential in species of "Candidatus Accumulibacter", a group of polyphosphate-accumulating organisms (PAOs). We constructed a metabolic model of the central carbon metabolism and compared the metabolic potential among available MAGs for “Ca. Accumulibacter” species. By combining Elementary Flux Modes Analysis (EFMA) with max-min driving force (MDF) optimization, we obtained all possible flux distributions of the metabolic network and calculated their individual thermodynamic feasibility. Our findings reveal significant variations in the metabolic potential among “Ca. Accumulibacter” MAGs, particularly in the presence of anaplerotic reactions. EFMA revealed 700 unique flux distributions in the complete metabolic model that enable the anaerobic uptake of acetate and its conversion into polyhydroxyalkanoates (PHAs), a well-known phenotype of “Ca. Accumulibacter”. However, thermodynamic constraints narrowed down this solution space to 146 models that were stoichiometrically and thermodynamically feasible (MDF > 0 kJ/mol), of which only 8 were strongly feasible (MDF > 7 kJ/mol). Notably, several novel flux distributions for the metabolic model were identified, suggesting putative, yet unreported, functions within the PAO communities. Overall, this work provides valuable insights into the metabolic variability among "Ca. Accumulibacter" species and redefines the anaerobic metabolic potential in the context of phosphate removal. More generally, the integrated workflow presented in this paper can be applied to any metabolic model obtained from a MAG generated from microbial communities to objectively narrow the expected phenotypes from community members.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.