Abstract

We propose an implementation of the nonperturbative renormalization group (NPRG) which applies to lattice models. Contrary to the usual NPRG approach where the initial condition of the RG flow is the mean-field solution, the lattice NPRG uses the (local) limit of decoupled sites as the (initial) reference system. In the long-distance limit, it is equivalent to the usual NPRG formulation and therefore yields identical results for the critical properties. We discuss both a lattice field theory defined on a d-dimensional hypercubic lattice and classical spin models. The simplest approximation, the local potential approximation, is sufficient to obtain the critical temperature and the magnetization of the three-dimensional Ising, XY, and Heisenberg models to an accuracy on the order of 1%. We show how the local potential approximation can be improved to include a nonzero anomalous dimension η and discuss the Berezinskii-Kosterlitz-Thouless transition of the two-dimensional XY model on a square lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.