Abstract

BackgroundInvasive mosquito species are responsible for millions of vector-borne disease cases annually. The global invasive success of Aedes mosquitoes such as Aedes aegypti and Aedes albopictus has relied on the human transport of immature stages in container habitats. However, despite the importance of these mosquitoes and this ecological specialization to their widespread dispersal, evolution of habitat specialization in this group has remained largely unstudied. We use comparative methods to evaluate the evolution of habitat specialization and its potential influence on larval morphology, and evaluate whether container dwelling and invasiveness are monophyletic in Aedes.ResultsWe show that habitat specialization has evolved repeatedly from ancestral ground pool usage to specialization in container habitats. Furthermore, we find that larval morphological scores are significantly associated with larval habitat when accounting for evolutionary relationships. We find that Ornstein-Uhleinbeck models with unique optima for each larval habitat type are preferred over several other models based predominantly on neutral processes, and that OU models can reliably simulate real morphological data.ConclusionsOur results demonstrate that multiple lineages of Aedes have convergently evolved a key trait associated with invasive success: the use of container habitats for immature stages. Moreover, our results demonstrate convergence in morphological characteristics as well, and suggest a role of adaptation to habitat specialization in driving phenotypic diversity in this mosquito lineage. Finally, our results highlight that the genus Aedes is not monophyletic.

Highlights

  • Invasive mosquito species are responsible for millions of vector-borne disease cases annually

  • We found that that all other aedine taxa resolved in two well-supported clades: the first with a SH-like branch support value of 100 encompasses the majority of non-Aedes aedine genera of Armigeres, Eretmapodites, Heizmannia, and Udaya, as well as many Aedes subgenera such as Stegomyia, Aedimorphus, Aedes, and others, hereafter ‘Clade A’; and this clade is sister to a second clade with a SH-like branch support value of 98, hereafter ‘Clade B,’ which includes the non-Aedes genera Opifex and Haemagogus, as well as the majority of Aedes subgenera such as Ochlerotatus, Rampamyia, Hulecoeteomyia, and many others (Fig. 1, Additional file 3: Figure S1)

  • Convergence of morphology in the Aedini we evaluated whether larval morphology might reflect the convergence observed in habitat preference by converting categorical variables of larval morphology to continuous dimensions using a multiple correspondence analysis (MCA) and keeping the first five dimensions

Read more

Summary

Introduction

Invasive mosquito species are responsible for millions of vector-borne disease cases annually. The global invasive success of vector mosquito species has relied on the utilization of domestic containers for immature stages, which can be transported incidentally by human trade [2,3,4,5]. Invasive species from the genus Aedes have been found on six continents, are frequently dispersed by human activities, and represent a serious threat to public health due to their ability to transmit numerous human pathogens. All such invasive Aedes utilize containers, natural or domestic, for immature stages, and all are thought to have become established outside. The Soghigian et al BMC Evolutionary Biology (2017) 17:262

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call