Abstract
We propose two models for improving the performance of rule-based classification under unbalanced and highly imprecise domains. Both models are probabilistic frameworks aimed to boost the performance of basic rule-based classifiers. The first model implements a global-to-local scheme, where the response of a global rule-based classifier is refined by performing a probabilistic analysis of the coverage of its rules. In particular, the coverage of the individual rules is used to learn local probabilistic models, which ultimately refine the predictions from the corresponding rules of the global classifier. The second model implements a dual local-to-global strategy, in which single classification rules are combined within an exponential probabilistic model in order to boost the overall performance as a side effect of mutual influence. Several variants of the basic ideas are studied, and their performances are thoroughly evaluated and compared with state-of-the-art algorithms on standard benchmark datasets.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have