Abstract
ABSTRACTWe study the emergence of gradient flows in Wasserstein distance as high friction limits of an abstract Euler flow generated by an energy functional. We develop a relative energy calculation that connects the Euler flow to the gradient flow in the diffusive limit regime. We apply this approach to prove convergence from the Euler–Poisson system with friction to the Keller–Segel system in the regime that the latter has smooth solutions. The same methodology is used to establish convergence from the Euler–Korteweg theory with monotone pressure laws to the Cahn–Hilliard equation.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have