Abstract

The influence of germanium on microstructure, crystallography, and thermal stability of the eutectic Cr-Cr3Si alloy was investigated. Fine eutectic microstructures could be preserved but slightly degenerated when up to 2 at.% Si was substituted by Ge. A transition from eutectic to peritectic microstructure composed of primary dendrites and A15 Cr3Si matrix was observed when higher amounts of Ge were added. X-ray diffraction results showed no limit for substitution of Si and Ge in the studied composition range. The lattice parameter of both Cr solid-solution and A15 silicide increased with increasing the Ge/Si ratio. A macro was developed for the ImageJ program to automate the quantitative microstructural image analysis. Results showed that Ge addition increases the A15 phase fraction of the two-phase alloys. Microstructural investigations on annealed alloys at 1350 °C demonstrated that the coarsening of both binary Cr-Cr3Si and ternary Cr-Cr3(Si, Ge) is interface-controlled. Although Ge addition to the eutectic alloy offered an isotropic microstructure, it decreased the thermal stability by degeneration of the lamellar structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.