Abstract

Abstract The United Nations indicates that available freshwater resources will decrease significantly due to pollution growth and urbanization; two-thirds of the world's population may face water shortages by 2030. Extended use of greywater is an alternative option for reducing potable water consumption in urban areas. Recently, the reuse of treated greywater for home gardens, peri-urban agriculture, and landscaping has become a widespread concern in many developing countries. This paper presents a study on a low-cost system that can perform greywater treatment for household use. This treatment system employed physical filtration by ceramic filters, quartz gravel, hollow fiber membrane, and UV disinfection. Three greywater samples collected from the kitchen, washing basins, and bathroom were investigated. The operation process determines the system's effectiveness by considering turbidity, coliform, Biochemical Oxygen Demand (BOD5), and Chemical Oxygen Demand (COD) concentration of the inlet and outlet water. As a result, high removal efficiency (i.e., >60%) could be obtained for each investigated parameter. Results also showed that grey water generated from washing basins has the highest potential for reuse since the water quality after treatment satisfies the water reuse standards for household irrigation. The findings encourage further exploration and implementation of greywater reuse practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call