Abstract

Batch biological treatment of log yard run-off reduced biochemical oxygen demand (BOD), chemical oxygen demand (COD) and tannin and lignin (TL) concentration by 99%, 80%, and 90%, respectively. Acute (Microtox) toxicity was decreased over treatment, from an initial EC 50 of 1.83% to a value of 50.4% after 48 h of treatment. Kinetics of biodegradation were determined using respirometry and fitted using the Monod and Tessier model. For the Monod model the maximum substrate uptake rate, and K s values determined were 0.0038 mg BOD/mgVSS min, and 1.4 mg/L, respectively. The efficacy of ozone as a pre- and post- biological treatment stage was also assessed. During ozone pretreatment, TL concentration and acute toxicity were rapidly reduced by 70% and 71%, respectively. Pre-ozonation reduced BOD and COD concentration by <10%, however a larger fraction of residual COD was non biodegradable after ozonation. Biologically treated effluent was subjected to ozonation to determine whether further improvements in effluent quality could be achieved. A reduction in COD and TL concentration was observed during ozonation, however no further improvement in toxicity was observed. Ozonation increased BOD by 38%, due to conversion of COD to BOD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call