Abstract

The process that transforms conductive sapwood to non-conductive heartwood in trees is poorly understood. Here, we use natural variation in climate to examine the environmental control of sapwood width in a widespread conifer species. We hypothesised that if sapwood width is linked to transpirational load, there would be a positive association between sapwood width, and continental gradients in mean annual rainfall, whereas age-related conversion to heartwood would be revealed from estimates of the age of the inner-most sapwood ring. Using the widespread Australian conifer Callitris columellaris we took cores from trees at 85 sites spanning a range of 168–2,117 mm in mean annual rainfall, and 14–28 °C in mean annual temperature. We found that sapwood width was remarkably similar throughout the species range, being only slightly lower in the tropics than the arid or temperate zone. There was a weak negative relationship between sapwood width and mean annual rainfall, which is in the opposite direction expected from transpirational control of sapwood width. Sapwood growth rings were wider, but there were fewer of them in the tropics than elsewhere, indicating conversion to heartwood occurred earlier here. Together with an earlier finding that tracheid diameter was largest in the tropics, our results show that differences amongst climate zones more strongly influence the hydraulic properties of sapwood than its amount.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.