Abstract

This theoretical paper focuses on the single-phase fluid flow through a granular porous medium. The emphasis is on the Darcy flow regime (without free boundary) of a linear viscous fluid in a saturated, deformable, homogeneous porous medium. The approach is developed at the Darcy scale (also referred to as macroscale or phenomenological scale). Within this framework, some discrete aspects of the flow model are highlighted, the governing equations are revisited, the thermodynamic state functions are reconsidered, and the Darcy paradox is presented. The Darcy paradox is illustrated for the isoshoric-isothermal flow of a viscous fluid in the liquid state, in a homogenous porous medium. After some remarks about the intrinsic assumption of this kind of flow, the governing equations are reduced to a well-known parabolic equation. According to this equation, infinitesimal pressure disturbances diffuse at an infinite speed. To remove this paradox, a mathematical model, based on the elementary scales method, is employed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call