Abstract
Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation with freshwater or reclaimed wastewater. Recent research has shown the tendency for these substances to accumulate in food crops. In this study, we developed and applied a simulation tool to predict the fate of three ionizable trace chemicals (triclosan—TCS, furosemide—FUR, ciprofloxacin—CIP) from human consumption/excretion up to the accumulation in soil and plant, following field amendment with sewage sludge or irrigation with river water (assuming dilution of WWTP effluent). The simulation tool combines the SimpleTreat model modified for fate prediction of ionizable chemicals in a generic WWTP and a recently developed dynamic soil-plant uptake model. The simulation tool was tested using country-specific (e.g., consumption/emission rates, precipitation and temperature) input data. A Monte Carlo-based approach was adopted to account for the uncertainty associated to physico-chemical and biokinetic model parameters.Results obtained in this study suggest significant accumulation of TCS and CIP in sewage sludge (1.4–2.8 mg kgDW−1) as compared to FUR (0.02–0.11 mg kgDW−1). For the latter substance, more than half of the influent load (60.1%–72.5%) was estimated to be discharged via WWTP effluent. Specific emission rates (g ha−1 a−1) of FUR to soil via either sludge application or irrigation were up to 300 times lower than for TCS and CIP. Nevertheless, high translocation potential to wheat was predicted for FUR, reaching concentrations up to 4.3 μg kgDW−1 in grain. Irrigation was found to enhance the relative translocation of FUR to plant (45.3%–48.9% of emission to soil), as compared to sludge application (21.9%–27.6%).A comparison with peer-reviewed literature showed that model predictions were close to experimental data for elimination in WWTP, concentrations in sewage and sludge and bioconcentration factors (BCFs) in plant tissues, which showed however a large variability. The simulation tool presented here can thus be useful for priority setting and for the estimation of human exposure to trace chemicals via intake of food crops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.