Abstract
Conventional segmented, retrospectively gated cine (Conv-cine) is challenged in patients with breath-hold difficulties. Compressed sensing (CS) has shown values in cine imaging but generally requires long reconstruction time. Recent artificial intelligence (AI) has demonstrated potential in fast cine imaging. To compare CS-cine and AI-cine with Conv-cine in quantitative biventricular functions, image quality, and reconstruction time. Prospective human studies. 70 patients (age, 39 ± 15 years, 54.3% male). 3T; balanced steady state free precession gradient echo sequences. Biventricular functional parameters of CS-, AI-, and Conv-cine were measured by two radiologists independently and compared. The scan and reconstruction time were recorded. Subjective scores of image quality were compared by three radiologists. Paired t-test and two related-samples Wilcoxon sign test were used to compare biventricular functional parameters between CS-, AI-, and Conv-cine. Intraclass correlation coefficient (ICC), Bland-Altman analysis, and Kendall's W method were applied to evaluate agreement of biventricular functional parameters and image quality of these three sequences. A P-value <0.05 was considered statistically significant, and standardized mean difference (SMD) < 0. 100 was considered no significant difference. Compared to Conv-cine, no statistically significant differences were identified in CS- and AI-cine function results (all P > 0.05), except for very small differences in left ventricle end-diastole volumes of 2.5 mL (SMD = 0.082) and 4.1 mL (SMD = 0.096), respectively. Bland-Altman scatter plots revealed that biventricular function results were mostly distributed within the 95% confidence interval. All parameters had acceptable to excellent interobserver agreements (ICC: 0.748-0.989). Compared with Conv-cine (84 ± 13 sec), both CS (14 ± 2 sec) and AI (15 ± 2 sec) techniques reduced scan time. Compared with CS-cine (304 ± 17 sec), AI-cine (24 ± 4 sec) reduced reconstruction time. CS-cine demonstrated significantly lower quality scores than Conv-cine, while AI-cine demonstrated similar scores (P = 0.634). CS- and AI-cine can achieve whole-heart cardiac cine imaging in a single breath-hold. Both CS- and AI-cine have the potential to supplement the gold standard Conv-cine in studying biventricular functions and benefit patients having difficulties with breath-holds. 1 TECHNICAL EFFICACY STAGE: 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.