Abstract
The Tibetan Plateau (TP) with an average elevation of over 4,000 m asl is the highest and most extensive highland in the world. We used monthly mean sunshine duration from the Chinese Meteorological Administration to examine the spatial and temporal variability of sunshine duration at 71 stations with elevations above 2,000 m asl in the eastern and central TP during the 1961–2005 period. The temporal evolution of the mean annual sunshine duration series shows a significant increase from 1961 to 1982 at a rate of 49.8 h/decade, followed by a decrease from 1983 to 2005 at a rate of −65.1 h/decade, with an overall significant decrease at a rate of −20.6 h/decade during the whole 1961–2005 period, which is mainly due to the summer and spring seasons. This confirms the evidence that sunshine duration in the TP ranges from brightening to dimming in accordance with sunshine duration trends in the rest of China. The surface solar radiation downwards from ERA-40 reanalysis data in the same region confirms the brightening/dimming phenomenon shown by the sunshine duration before/after the 1980s. Otherwise, additional climatic variables such as low cloud amount, total cloud amount, precipitation, relative humidity and water vapor pressure, in most cases, exhibit significant negative correlation with sunshine duration in the TP on an annual and seasonal basis before and after 1982, respectively. The trends of these variables suggest that changes in some of them might be related to the brightening and dimming detected with the use of sunshine duration measurements over the TP. We also hypothesize that the impact of anthropogenic aerosols upon the climatic variables analyzed cannot be rejected, especially in the significant increase in low cloud cover since approximately 1980.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have