Abstract
We consider Bloch equations which govern the evolution of the density matrix of an atom (or: a quantum system) with a discrete set of energy levels. The system is forced by a time dependent electric potential which varies on a fast scale and we address the long time evolution of the system. We show that the diagonal part of the density matrix is asymptotically solution to a linear Boltzmann equation, in which transition rates are appropriate time averages of the potential. This study provides a mathematical justification of the approximation of Bloch equations by rate equations, as described in <em>e.g.</em> [Lou91]. The techniques used stem from manipulations on the density matrix and the averaging theory for ordinary differential equations. Diophantine estimates play a key role in the analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.