Abstract

Soil contaminated with the production wastewater of 4,4′-diaminostilbene-2,2′-disulfonic acid is extremely hazardous and difficult to bioremediate. In this study, a cost-effective method was developed to reduce the risk of contaminated soil and produce building materials through a combination of ultrasonic processing and solidification/stabilisation. Ultrasonic processing conditions of 5 min at 40 kHz were found to significantly improve the compressive strength of bricks. The results of scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis demonstrated that the enhanced strength was due to the ultrasonic processing controlling the shape and scale of the crystals and microstructure of the cement paste. Furthermore, the effect of the activating agent, CaO, on the leaching toxicity of the bricks was closely related to the curing temperature. Under natural dry conditions (10–25 °C), the leaching toxicity decreased along with the reduction of CaO. However, under high artificial temperature conditions (40 °C), increasing the CaO was beneficial for decreasing the leaching toxicity. The addition of 2.91% CaO was suitable for improving brick performance under both natural dry (10–25 °C) and artificial temperature curing conditions (40 °C). The results of GC–MS revealed that 64.8% and 66.7% of organic species and organic volume, respectively, were reduced in the leachate of the bricks, which was produced by CaO activation and ultrasonic treatments. It was demonstrated that the optimal combined process for cost-effectively transforming hazardous soil to active building materials is feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call