Abstract
The increasing number of new construction projects requiring high-quality building products, which, in turn, emit enormous amounts of CO2, runs counter to European and global climate goals. The increasing occupation of valuable landfill space is also an ecological problem. To meet these challenges without having to lower living standards, more ecological building materials should be used in the future. Geopolymers or alkali-activated materials, which, unlike conventional building materials, can be produced and used without a prior burning or calcination process, offer a comparatively low-CO2 alternative. Significant CO2 emissions can already be saved by using this technology. The aim of this work is to investigate whether geopolymers can also be produced from construction and demolition residuals generated by the construction industry in order to counteract the problem of the increasing use of landfill space and, at the same time, to further reduce greenhouse gas emissions in the production of building materials. For this purpose, various residual materials from the construction and demolition industry are investigated by means of XRF, XRD, and IR spectroscopy for their setting behavior by alkaline activation. At the same time, the characteristic values of compressive strength, flexural strength, bulk density, and thermal conductivity, which are important for building materials, are determined in order to test the possible applications of the resulting materials as building materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.