Abstract

By introduction of a new Fe(L1)2 spin-crossover (SCO) unit into the polynuclear system, a nano-scale Fe4(L2)4 molecular square architecture is designed through coordination-directed self-assembly strategy. Both the mononuclear Fe(L1)2 and tetranuclear Fe4(L2)4 complexes have been structurally confirmed by 1H nuclear magnetic resonance (NMR), electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS), and temperature-dependent single crystal X-ray diffraction studies. Variable-temperature magnetic susceptibility measurements reveal the presence of an abrupt SCO behavior with a thermal hysteresis width of 4 K for Fe(L1)2. By clear contrast, Fe4(L2)4 undergoes a gradual spin transition behavior with enlarged thermal hysteresis width and higher spin transition temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.