Abstract
In this paper, we consider a generalized integrable discrete nonlinear Schrödinger (NLS) equation, which can describe the dynamics of discrete alpha helical proteins with higher-order excitations and lead to the higher-order NLS equation in the continuum limit. The Darboux transformation (DT) and the soliton solutions of this generalized discrete NLS equation are implemented. It is shown that the integrable properties of the generalized discrete NLS equation, including the discrete Lax pair, the DT and the discrete soliton solutions, give rise to their continuous counterparts as the discrete space step tends to zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.