Abstract

We use a statistical approach to investigate the modulational instability (Benjamin-Feir instability) in several nonlinear discrete systems: the discrete nonlinear Schrodinger (NLS) equation, the Ablowitz-Ladik equation, and the discrete deformable NLS equation. We derive a kinetic equation for the two-point correlation function and use a Wigner-Moyal transformation to write it in a mixed space-wave-number representation. We perform a linear stability analysis of the resulting equation and discuss the obtained integral stability condition using several forms of the initial unperturbed spectrum (Lorentzian and δ-spectrum). We compare the results with the continuum limit (the NLS equation) and with previous results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.