Abstract
Fringing-field effects on high-resolution liquid crystal microdisplay devices, including the reflection-type liquid-crystal-on-silicon (LCOS) and transmission-type poly-silicon thin-film-transistor liquid crystal displays are simulated by the beam propagation method. The electro-optic performances of six commonly used liquid crystal modes are analyzed by the two-dimensional optical simulator. The vertically aligned (VA) cell exhibits the highest contrast ratio, but its fringing-field effect is severe. A circularly polarized light illuminated LCOS device is presented to eliminate the fringing-field effect of the VA cell. Both simulated and confirming experimental results show that the long-standing problems of poor sharpness, low brightness, and slow transition time of the VA cell can be overcome by using a circularly polarized light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.