Abstract

A physical, compact, short-channel threshold voltage model for undoped double-gate MOSFETs has been extended through a phenomenological approach to include the fringe-induced barrier lowering (FIBL) effect associated with high-permittivity (high- k) gate dielectrics. The resulting analytical model closely describes published numerical simulations over a wide range of device/material parameters. Exploiting the new device model, a concerted analysis combining FIBL-enhanced short-channel effects and gate direct tunneling current is performed on candidate high- k gate dielectrics to assess their overall impact on DG MOSFET scaling. It is projected that high- k gate dielectrics may extend DG MOSFET scaling beyond that with SiO 2 by 10–20% for a 2–3× smaller equivalent oxide thickness of high- k dielectrics than that of SiO 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.