Abstract

The Fringe protein of Drosophila and its vertebrate homologues function in boundary determination during pattern formation. Fringe has been proposed to inhibit Serrate-Notch signalling but to potentiate Delta-Notch signalling. Here we show that Fringe and Notch form a complex through both the Lin-Notch repeats and the epidermal growth factor repeats 22-36 (EGF22-36) of Notch when they are co-expressed. The Abruptex59b (Ax59b) and AxM1 mutations, which are caused by missense mutations in EGF repeats 24 and 25, respectively, abolish the Fringe-Notch interaction through EGF22-36, whereas the l(1)N(B) mutation in the third Lin-Notch repeat of Notch abolishes the interaction through Lin-Notch repeats. Ax mutations also greatly affect the Notch response to ectopic Fringe in vivo. Results from in vitro protein mixing experiments and subcellular colocalization experiments indicate that the Fringe-Notch complex may form before their secretion. These findings explain how Fringe acts cell-autonomously to modulate the ligand preference of Notch and why the Fringe-Notch relationship is conserved between phyla and in the development of very diverse structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.