Abstract
The frictional energy dissipation mechanism of a supported two-layer graphene film under the excitation of the model washboard frequency is investigated by molecular dynamics simulations. The results show that two local maxima in the energy dissipation rate occur at special frequencies as the excitation frequency increases from 0.1 to 0.6 THz. By extracting the vibrational density of states of the graphene, it is found that large numbers of phonons with frequencies equal to the excitation frequency are produced. A two-degree of freedom mass-spring model is proposed to explain the molecular dynamics results. Since the washboard frequency for atomically surfaces in wearless dry friction can be analogous to the excitation frequency in the molecular dynamics simulations, our study indicates that the phonon resonance would occur once the washboard frequency is close to the natural frequency of the frictional system, leading to remarkable local maxima in energy dissipation.Graphical Abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.