Abstract

Two different hardness distributions were observed to result from the friction stir welding of an Al–Mg–Si alloy using identical welding speeds but different heat inputs. In one case, the distribution was relatively symmetric about the weld centreline and in the other, the hardness declined continuously from the advancing to the retreating sides of the weld nugget. Based on in-probe temperature measurements, full-field grain size mapping, and response to post-weld heat treatment, it has been ascertained that under low heat input conditions, the weld nugget attained a higher temperature on the advancing side than on the retreating side. Such a temperature asymmetry has often been proposed and has been predicted by simulation but, has not been convincingly demonstrated before this time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call