Abstract

The perception of many food attributes is related to mechanical stimulation and friction experienced in the tongue-palate contact during mastication. Friction in the tongue-palate is determined by the changing film properties (composition, component distribution, thickness) in the conjunction. We suggest this evolution is essentially determined by tongue-palate film loss rather than shear flow entrainment which predominates in conventional bearing lubrication. The paper reports friction measurements in a simulated tongue-palate contact for a range of high and low fat dairy foods. A reciprocating, sliding contact with restricted stroke length (<contact width) was used; under these conditions there is negligible shear-entrainment of fluid from outside the contact area. The tongue-palate contact was simulated by a PDMS ball and glass surface. The effect of hydrophobic and hydrophilic surfaces on friction was investigated for different fat contents (0, 4.2, 9.5%wt fat). Friction was measured over 60s of rubbing. Significant differences were observed in the friction change with time for different fat contents (μ 9.5<μ 4.2<μ 0wt%) and for different surface energy conditions (μ hydrophilic<μ hydrophobic). Post-test visualisation of the rubbed films showed that low friction coefficient was associated with the formation of a thin oil film on deposited particulate solids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.