Abstract
We report a long-term lubrication for a PbS QD nanocoating sliding against bearing steel balls in the air. Through tribo-physchemical interactions, ultralow friction (μ ≈ 0.078 ± 0.0026) is achieved for the system tested under 1 N for 60 min. During the rubbing process, the tribo-film of the counterfacing ball is covered by a degraded PbS QD layer and amorphous mixed phase. Meanwhile, the disc track surface is composed of degraded PbS QD layers, clustered rearranged PbS QD districts, induced decomposed Pb-enriched multilayers, and an amorphous mixed phase via friction-induced structural transformation. The PbS QDs are transferred onto the sliding contacts to form a robust tribo-film, which is the key to realizing ultralow friction. Consequently, a long-term lubrication mechanism is attributed to the synergetic tribo-physchemical interaction along sliding interfaces upon shift, redirection, and decomposition of nanoparticles. These discoveries reveal QD-based nanolubricants in common working conditions for mechanical engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.