Abstract

The aim of this work was to investigate whether electrochemical surface treatment of nickel-titanium (NiTi) and titanium-molybdenum (TiMo) archwires (OptoTherm and BetaTitan; Ortho-Dent Specials, Kisdorf, Germany) reduces friction inside the bracket-archwire complex. We also evaluated further material properties and compared these to untreated wires. The material properties of the surface-treated wires (Optotherm/LoFrix and BetaTitan/LoFrix) were compared to untreated wires made by the same manufacturer (see above) and by another manufacturer (Neo Sentalloy; GAC, Bohemia, NY, USA). We carried out a three-point bending test, leveling test, and friction test using an orthodontic measurement and simulation system (OMSS). In addition, a pure bending test was conducted at a special test station, and scanning electron micrographs were obtained to analyze the various wire types for surface characteristics. Finally, edge beveling and cross-sectional dimensions were assessed. Force losses due to friction were reduced by 10 percentage points (from 36 to 26%) in the NiTi and by 12 percentage points (from 59 to 47%) in the TiMo wire specimens. Most of the other material properties exhibited no significant changes after surface treatment. While the three-point bending tests revealed mildly reduced force levels in the TiMo specimens due to diameter losses of roughly 2%, these force levels remained almost unchanged in the NiTi specimens. Compared to untreated NiTi and TiMo archwire specimens, the surface-treated specimens demonstrated reductions in friction loss by 10 and 12 percentage points, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.